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Abstract 

Background: Commercial geospatial data resources are frequently used to understand healthcare utilisation. 
Although there is widespread evidence of a digital divide for other digital resources and infra‑structure, it is unclear 
how commercial geospatial data resources are distributed relative to health need.

Methods: To examine the distribution of commercial geospatial data resources relative to health needs, we assem‑
bled coverage and quality metrics for commercial geocoding, neighbourhood characterisation, and travel time 
calculation resources for 183 countries. We developed a country‑level, composite index of commercial geospatial data 
quality/availability and examined its distribution relative to age‑standardised all‑cause and cause specific (for three 
main causes of death) mortality using two inequality metrics, the slope index of inequality and relative concentration 
index. In two sub‑national case studies, we also examined geocoding success rates versus area deprivation by district 
in Eastern Region, Ghana and Lagos State, Nigeria.

Results: Internationally, commercial geospatial data resources were inversely related to all‑cause mortality. This 
relationship was more pronounced when examining mortality due to communicable diseases. Commercial geospa‑
tial data resources for calculating patient travel times were more equitably distributed relative to health need than 
resources for characterising neighbourhoods or geocoding patient addresses. Countries such as South Africa have 
comparatively high commercial geospatial data availability despite high mortality, whilst countries such as South 
Korea have comparatively low data availability and low mortality. Sub‑nationally, evidence was mixed as to whether 
geocoding success was lowest in more deprived districts.

Conclusions: To our knowledge, this is the first global analysis of commercial geospatial data resources in relation to 
health outcomes. In countries such as South Africa where there is high mortality but also comparatively rich com‑
mercial geospatial data, these data resources are a potential resource for examining healthcare utilisation that requires 
further evaluation. In countries such as Sierra Leone where there is high mortality but minimal commercial geospatial 
data, alternative approaches such as open data use are needed in quantifying patient travel times, geocoding patient 
addresses, and characterising patients’ neighbourhoods.
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Background
Sustainable Development Goal (SDG) 3, Target 3.8 seeks 
to ‘achieve universal health coverage, including financial 
risk protection, access to quality essential health-care 
services…for all’ [1], with a similar target 3.7 seeking to 
deliver universal maternal healthcare coverage. GIS has 
been proposed as an integrative information and com-
munication technology tool for accelerating progress 
towards universal health coverage (UHC) [2]. Informed 
decision-making is central to achieving UHC and spatial 
analysis enables precise identification of health needs to 
inform system strengthening interventions and can help 
to identify localised gaps in service provision, masked 
by national or provincial averages [2]. Supporting UHC 
has been proposed as a means of reducing mortality. For 
example, increasing the proportion of births attended by 
a skilled birth attendant at primary healthcare facilities 
can contribute to reduced maternal mortality [3].

To realise the potential of GIS, it has been argued that 
the health sector has to ‘geoenable’ its health informa-
tion systems [2]. ‘Geoenabling’ entails putting in place 
the necessary governance structures, technical capac-
ity, guidelines, standards, protocols, technology and 
core data to harness GIS’ potential. Thus, a management 
structure that provides sufficient funding to underpin 
GIS adoption, resources for creating and maintaining 
health information systems, and an underlying national 
spatial data infrastructure are all prerequisites for GIS 
uptake in the health sector. Awareness of GIS use in 
healthcare planning remains low even in developed 
countries [4], where within the UK National Health Ser-
vice its use remains largely restricted to mapping.

Here, we focus on one such potential barrier to GIS 
uptake in the health sector, namely the availability of 
core data. In representing population demand for health-
care and examining patient interactions with healthcare 
facilities, the use of several key commercial geospatial 
resources has become widespread in many developed 
countries. These geospatial resources include reference 
data sets and tools for geocoding the residential addresses 
of patients presenting at healthcare facilities [5, 6], and 
transportation data that enable patient travel times to be 
computed from place of residence to facility [7, 8]. They 
also include area statistics and geodemographic data sets, 
which provide insights into neighbourhood characteris-
tics that may be associated with healthcare demand and 
utilisation [9–11].

Although such data resources are generally available in 
high income countries, in many low and middle income 
countries (LMICs), such data may be patchy in coverage, 
imprecise, or lacking altogether. Furthermore, in devel-
oped countries, national spatial data infra-structures 
(SDIs) typically enable national mapping and statistical 

agencies to maintain address databases or dwelling 
frameworks, and thereby construct small area statistics. 
In LMICs, however, barriers relating to the global digi-
tal divide such as lack of financial resources, insufficient 
leadership and governance, poor internet bandwidth 
[12], lack of trained personnel, lack of vendor support, 
and power dynamics over information release all inhibit 
SDI development [13]. Even where open data initiatives 
exist as in the example of Kenya, such resources may still 
remain limited [14], although there is evidence [15, 16] 
that coverage of the world’s largest open geospatial data-
base, OpenStreetMap (OSM), is rapidly expanding in 
many LMICs.

Over 30 years ago, an ‘inverse care law’ was first iden-
tified by Hart [17], which highlighted the frequently 
encountered perverse relationship between healthcare 
provision and need. Since then, there have been numer-
ous studies that have quantified greater healthcare pro-
vision among areas of low need and lower healthcare 
provision in areas of high need [18–21], confirming this 
phenomenon in many settings. It is unclear whether data 
for planning healthcare delivery follow a similar pattern.

Methods
Aims
In this paper, we aim to quantify the extent to which the 
same perverse relationship with health needs applies to 
geospatial data availability as with healthcare provision. 
We explore two scales through a cross-sectional, eco-
logical study design. We firstly examine the relationship 
between geospatial data availability and health need as 
measured by all-cause mortality and mortality due to 
three groups of causes, globally at national level. We then 
consider the relationship between health need and geo-
spatial data availability in two sub-national case studies 
from Ghana and Nigeria.

Data
At international level, we examine the availability, by 
country, of three sets of commercial data resources that 
are central to understanding population demand for 
healthcare and spatial patterns of healthcare utilisation. 
These are geocoding tools for locating patients’ resi-
dences; transportation network resources for computing 
patient travel from place of residence to health facility; 
and area statistics for characterising the neighbourhoods 
where patients live. We excluded other commercial geo-
spatial data resources not directly related to healthcare-
seeking behaviour, such as remotely sensed imagery. To 
identify such resources, we used the search strategy in 
Additional file  1: Table  S1. We included only geospatial 
data resources that met the following criteria:
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  • Related to more than five countries, thereby hav-
ing an international rather than national or regional 
remit

  • Were not derived exclusively from open data and 
were provided as a commercial service

  • Did not duplicate data resources already included in 
our analysis (for example where there were several 
APIs based on the same underlying data resource)

  • Provided published statements of data availability or 
quality by country.

Where necessary, we contacted data providers to request 
permission to use data availability or quality statements 
in our analysis, only including those where such permis-
sion was granted. The geospatial resources that met all 
these criteria were included in our analysis are shown in 
Table 1 (Additional file 1: Tables S2–S4 documents data 
resources that were excluded and reasons for this).

Alongside these resources, we used all-cause mortal-
ity by country for the most recent period (2000–2015) 
reported by the World Health Organisation (WHO) 

[22], as a general health outcome measure and thereby 
metric of healthcare need. We also separately examined 
the major WHO categorization of mortality: non-com-
municable diseases; injuries; communicable diseases, 
maternal, perinatal, and nutritional conditions for 183 
countries.

Analysis
International analysis
National mortality data from WHO were age-standard-
ised to account for differences in population structure 
between countries. As dependent territories are not 
reported separately in WHO mortality data, these were 
excluded from our analysis.

We then generated commercial geospatial resource 
indicators by country as follows:

  • Geocoding resources Since the published level of 
geocoding availability and quality via the Google 
Application Programming Interface (API) scarcely 
varied by country, we used the geocoding precision 

Table 1 Commercial geospatial data resources for  geocoding patient addresses, estimating travel times, 
and characterising patients’ neighbourhoods

Geospatial resource Description Web link

Geocoding

ESRI geocoding resources Underpinning resources for geocoding via API, 
desktop and online software

https ://devel opers .arcgi s.com/rest/geoco de/api‑refer 
ence/geoco de‑cover age.htm

Pitney Bowes Geocoding API https ://devel oper2 .pitne ybowe s.com/docs/locat ion‑
intel ligen ce/v1/en/index .html#GeoCo de/Geoco de/
LI_GGM_Geo_Geoco ding.html#GGM_Geo_Geoco 
ding__Geoco ding_Count rySpe cific 

TomTom Resources for geocoding API https ://devel oper.tomto m.com/marke t‑cover age‑1

MapBox Resources for geocoding API https ://www.mapbo x.com/geoco ding/#data

Loqate Resources for geocoding service https ://loqat e.com/count ries‑cover ed/

Patient travel

ESRI/HERE Underpinning resources for travel time estimation 
via API, desktop and online software

https ://doc.arcgi s.com/en/arcgi s‑onlin e/refer ence/
netwo rk‑cover age.htm

Google traffic/speed limits Resources accessible via Google Maps API https ://devel opers .googl e.com/maps/cover age

iGeoloise TravelTime Platform Resources for API for computing travel times via 
public transport and driving

http://docs.trave ltime platf orm.com/overv iew/suppo 
rted‑count ries/

TomTom API resources for routing and drive‑times https ://devel oper.tomto m.com/marke t‑cover age‑1

MapBox Directions API Resources for travel time API https ://www.mapbo x.com/api‑docum entat ion/
pages /traffi c‑count ries.html

Neighbourhood characterisation

Michael Bauer Area statistics covering topics such as population, 
age‑sex structure, consumer lifestyles, unemploy‑
ment and purchasing power

http://www.engli sh.mb‑resea rch.de/marke t‑data‑
overs eas.html

Mosaic Global geodemographic resources Area statistics based on consumer classification 
system

http://www.exper ian.co.uk/asset s/busin ess‑strat egies 
/broch ures/Mosai c_Globa l_facts heet%5b1%5d.pdf

Cameo International Area statistics based on consumer classification 
system

http://www.callc redit .co.uk/media /12872 58/cameo 
%20glo bal%20map .jpg

Maptitude Spatially disaggregated demographic data that are 
more than headcounts

https ://www.calip er.com/maptd ata.htm

https://developers.arcgis.com/rest/geocode/api-reference/geocode-coverage.htm
https://developers.arcgis.com/rest/geocode/api-reference/geocode-coverage.htm
https://developer2.pitneybowes.com/docs/location-intelligence/v1/en/index.html%23GeoCode/Geocode/LI_GGM_Geo_Geocoding.html%23GGM_Geo_Geocoding__Geocoding_CountrySpecific
https://developer2.pitneybowes.com/docs/location-intelligence/v1/en/index.html%23GeoCode/Geocode/LI_GGM_Geo_Geocoding.html%23GGM_Geo_Geocoding__Geocoding_CountrySpecific
https://developer2.pitneybowes.com/docs/location-intelligence/v1/en/index.html%23GeoCode/Geocode/LI_GGM_Geo_Geocoding.html%23GGM_Geo_Geocoding__Geocoding_CountrySpecific
https://developer2.pitneybowes.com/docs/location-intelligence/v1/en/index.html%23GeoCode/Geocode/LI_GGM_Geo_Geocoding.html%23GGM_Geo_Geocoding__Geocoding_CountrySpecific
https://developer.tomtom.com/market-coverage-1
https://www.mapbox.com/geocoding/%23data
https://loqate.com/countries-covered/
https://doc.arcgis.com/en/arcgis-online/reference/network-coverage.htm
https://doc.arcgis.com/en/arcgis-online/reference/network-coverage.htm
https://developers.google.com/maps/coverage
http://docs.traveltimeplatform.com/overview/supported-countries/
http://docs.traveltimeplatform.com/overview/supported-countries/
https://developer.tomtom.com/market-coverage-1
https://www.mapbox.com/api-documentation/pages/traffic-countries.html
https://www.mapbox.com/api-documentation/pages/traffic-countries.html
http://www.english.mb-research.de/market-data-overseas.html
http://www.english.mb-research.de/market-data-overseas.html
http://www.experian.co.uk/assets/business-strategies/brochures/Mosaic_Global_factsheet%255b1%255d.pdf
http://www.experian.co.uk/assets/business-strategies/brochures/Mosaic_Global_factsheet%255b1%255d.pdf
http://www.callcredit.co.uk/media/1287258/cameo%20global%20map.jpg
http://www.callcredit.co.uk/media/1287258/cameo%20global%20map.jpg
https://www.caliper.com/maptdata.htm
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levels published by Pitney Bowes, TomTom, MapBox, 
Loqate, and the Environmental Systems Research 
Institute (ESRI).

  • Resources for computing patient travel times To char-
acterise availability and quality of resources for com-
puting travel times via the Google API, we generated 
a composite index by summing reported data avail-
ability for cycling directions, walking directions, driv-
ing directions, speed limits and availability of a traffic 
layer. Each of these was scored as two for ‘good qual-
ity and availability’, one for ‘approximate data quality 
and availability’ and zero otherwise. ESRI/HERE data 
quality and availability was characterised by six levels, 
based on availability of traffic and speed limit data, 
and completeness of street network coverage, whilst 
TomTom resources were characterised by availability 
of traffic flows, traffic incidents, and online routing. 
We separately recorded the availability of a traffic 
layer via MapBox and availability of routing for car 
travel only or car travel and public transport via iGe-
oloise TravelTime.

  • Area statistics for characterising patients’ neighbour-
hoods To quantify availability of neighbourhood 
statistics by country, we computed three measures. 
Firstly, as a measure of spatial data disaggregation, we 
used the mean population per areal unit (lower mean 
populations indicate a higher level of spatial disag-
gregation) in Michael Bauer data sets. Where no data 
were available from this provider for a given country, 
we used the national 2015 population estimate from 
the WHO mortality database. Secondly, for the most 
detailed geography available in the Michael Bauer 
data, we counted the number of areal attributes avail-
able per country, setting this to zero where no data 
were available. Finally, for each country, we identi-
fied whether only one or both the geodemographic 
classifications (i.e. CAMEO Worldwide and Mosaic 
Global) were available, alongside availability of Map-
titude demographic data.

To examine the availability of these geospatial resources 
relative to healthcare need, as measured by standardised 
all-cause mortality and cause-specific mortality, we com-
puted relative concentration indices and slope indices of 
inequality [23] for each of these measures of geospatial 
data availability using a tool from Public Health England 
[24]. In this context, the slope index of inequality meas-
ured the change in mortality relative to ranked geospatial 
data availability/quality, whilst the relative concentration 
index measured the mortality gradient against relative 
geospatial data availability/quality.

We also created a composite index of commercial geo-
spatial resource quality/availability (geospatial resource 

index) by combining these various indicators. For each 
of the three index domains (geocoding resources, patient 
travel, and neighbourhood characterisation), we ranked 
each country from highest to lowest based on each of 
the above indicators, then summed these ranks, dividing 
the total by the maximum possible summed rank to give 
an index for each domain between 0 and 1. To avoid the 
index being dominated by indicator availability at domain 
level, we then summed the three domain index values. 
We regressed logged standardised mortality against the 
geospatial resource index, identifying as outliers in terms 
of data availability those countries with studentised resid-
uals greater than two. We also calculated the correlation 
of the geospatial resource index with the percentage of 
internet users and gross domestic product (GDP) per 
capita for 2016 in each country [25].

Sub‑national case studies
To examine sub-national geospatial commercial resource 
availability and quality, two sub-national case studies 
were conducted, one in Eastern Region, Ghana and the 
other in Lagos State, Nigeria. Both focussed on suc-
cess rates for geocoding facility locations (health facili-
ties and schools respectively). In the absence of robust 
district-level mortality estimates, both studies examined 
geocoding success rates relative to area deprivation at 
administrative level 2 (districts in Ghana or local gov-
ernment areas in Nigeria). In this context, we consider 
area deprivation to reflect ‘an area’s potential for health 
risk from ecological concentration of poverty, unemploy-
ment, economic disinvestment, and social disorganisa-
tion’ [26].

In Eastern Region, 984 health facility place-names from 
25 districts were obtained from the Ghana Health Service 
routine data repository (DHIMS2) and geocoded via an 
interface to the Google Maps API Version 2 [27]. Geoco-
ding success was measured as the proportion of facilities 
per district for which a location within Eastern Region 
was returned. District deprivation was assessed firstly 
via the 2017 UNICEF District League Table (DLT) [28], a 
composite index of district development based on indica-
tors of education, sanitation, rural water, health, security 
and governance. Secondly, district deprivation was also 
assessed via a bespoke district deprivation index. The 
bespoke deprivation index was created from 12 indicators 
representing six domains: information access, education, 
energy, employment, water and sanitation, and living 
conditions, adapting an approach used in South Africa 
[29]. Indicators values were drawn from 2010 census data 
[30]. Within each domain, each indicator was standard-
ised by conversion to a z-score, with z-scores averaged 
for each domain. The average scores for the six domains 
were then summed to give a composite deprivation score.
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Similarly, in Lagos State 310 schools, both private and 
public, from 20 Local Government Areas (LGAs) were 
obtained from online news media [31]. These were then 
geocoded using the Google Maps API Version 2 via 
BatchGeo [32]. A deprivation index with the same six 
domains as Ghana was created for the LGAs, but with 9 
indicators drawn from 2006 census data acquired from 
the National Population Commission. These were then 
standardised and combined using the same method as 
for Eastern Region. For both case studies, geocoding suc-
cess per district/LGA was then plotted against depriva-
tion. Relative concentration indices and slope indices of 
inequality were computed for district-level geocoding 
success rates versus the deprivation measures.

Results
Characteristics of commercial geospatial data resources
Table 2 summarises the availability and precision of com-
mercial geospatial resources for the 183 countries for 
which data were available in the WHO mortality data-
base. There is considerable international variation in each 
indicator’s availability, with for example both predic-
tive and live traffic data underpinning ESRI’s drive-time 
calculations in 11 countries, but conversely only partial 
coverage of the major road network being available in 24 
countries. Similarly, market and demographic statistics 
were available for areas with average populations of less 
than a thousand in some countries, but over ten million 
in others.

International inequality in access to commercial geospatial 
data resources
Table  3 shows two health inequality metrics, the rela-
tive concentration index and slope index of inequal-
ity, for national all-cause mortality versus international 
availability and quality of various commercial geospatial 
data resources. Slope index of inequality values indi-
cate the effect on all-cause mortality of moving from the 
most data-poor country to the most data-rich. Negative 
concentration indices suggest mortality is concentrated 
among data-poor populations, whilst zero indicates no 
mortality gradient relative to geospatial data. Slope indi-
ces of inequality were significantly different from zero 
for most sources of commercial geospatial data consid-
ered, suggesting significant health inequalities for most 
resources. However, levels of inequality were lower for 
resources for computing patient travel times than for 
resources for geocoding patient addresses or characteris-
ing patients’ areas of residence. For example, concentra-
tion indices for ESRI’s geocoding service and population 
size of Michael Bauer’s areal units were − 0.14 and − 0.12 
respectively, whereas concentration indices for Google 
and ESRI’s patient travel resources were less than − 0.07.

Table  4 shows the inequality metrics broken down 
by the WHO cause-specific mortality categorization. 
As indicated by the concentration index values differ-
ing from zero, measured inequalities were greatest for 
the communicable disease group and lowest for non-
communicable diseases, both for the overall index and 
for the geocoding and neighbourhood characterisation 
domains. Concentration index values and therefore 
measured inequality were closer to zero for the patient 
travel domain, as with all-cause mortality.

International geospatial resource index
Figure  1 shows the international geospatial resource 
index (illustrating quality/availability of commercial 
geospatial data resources for healthcare planning). 
According to the composite index, the quality/avail-
ability is generally high in the Americas, Australasia 
and Europe, but low in Africa and south Asia. How-
ever, some data providers document potentially valu-
able geospatial resources for healthcare planning in 
countries with high mortality, particularly in west and 
southern Africa. For example, a traffic layer is available 
via Google and interpolated street address level geoco-
ding is documented by Pitney Bowes for Nigeria, both 
potentially valuable in understanding patient travel.

The geospatial resource index was strongly correlated 
with the percentage of internet users per country in 
2016 (r = 0.77, p < 0.001, n = 183) and to a lesser extent 
with GDP per capita (r  =  0.68, p  <  0.001, n  =  174). 
Several African countries such as South Africa and 
Mozambique had comparatively high geospatial data 
availability/quality scores given GDP, whilst several of 
the Gulf States (e.g. Qatar, United Arab Emirates) and 
smaller island states (e.g. Iceland, the Seychelles) had 
comparatively low index values given their GDP per 
capita. Similar patterns were observable for index val-
ues versus internet use.

Figure  2 shows the distribution of standardised all-
cause mortality in relation to the geospatial resource 
index. As anticipated from the deprivation indicators 
above, the pattern of all-cause mortality broadly follows 
geospatial resource quality/availability. Several outli-
ers are labelled in Fig.  2. Countries with low all-cause 
mortality and low commercial geospatial data resources 
were typically either small island states such as Malta 
and the Maldives, or states with strict controls on 
international transfers of national data, such as South 
Korea and Cuba. South Africa was notable for its high 
all-cause mortality but comparatively high commercial 
geospatial resource availability, with similar outliers 
being in southern or west Africa.
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Table 2 Geospatial resource availability and precision for 183 countries (portions of this table are modifications based 
on work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution 
License. Used with permission. Copyright © 2017 Esri, ArcGIS Online, HERE, Increment P, GlobeTech and the GIS User 
Community. All rights reserved. © 2017 Michael Bauer Research GmbH, © TomTom 2018)

Availability and precision of geospatial data resources No of countries (%)

Geocoding

ESRI

 Level 1: address searches likely to result in either precise coordinates or interpolated location along street for address 42 (23.0%)

 Level 2: address searches often result in precise coordinates or interpolated location along street, but sometimes street‑
level coordinates or coarser

16 (8.7%)

 Level 3: address searches sometimes result in precise coordinates or interpolated location along street, but more often 
street‑level coordinates or coarser

51 (27.9%)

 Level 4: address searches result in imprecise locations, e.g. centroids of higher‑level administrative boundaries 74 (40.4%)

Pitney Bowes Geocoding (highest precision available)

 Precise address point geocoding 20 (10.9%)

 Address geocoding 39 (21.3%)

 Street‑level geocoding 60 (32.8%)

 Post code 34 (18.6%)

 Administrative boundaries or place‑names 29 (15.8%)

 Not specified 1 (0.5%)

TomTom geocoding (highest precision available)

 Address point 42 (23.0%)

 Interpolated address 20 (10.9%)

 Street‑level 77 (42.1%)

 Locality 44 (24.0%)

MapBox geocoding (highest precision available)

 Address geocoding 25 (13.7%)

 Postcode 20 (10.9%)

 Place‑name 60 (32.8%)

 No service 79 (42.6%)

Loqate geocoding

 Premises—point 52 (28.4%)

 Premises 44 (24.0%)

 Thoroughfare 68 (37.2%)

 Locality 19 (10.4%)

Patient travel

ESRI/HERE travel times

 Predictive traffic: comprehensive street data with live, historic, and predictive traffic 11 (6.0%)

 Live traffic: comprehensive street data with live and historic traffic 40 (21.9%)

 Historical traffic: comprehensive street data with historic traffic only 20 (10.9%)

 Posted speed limits: comprehensive street data but with time‑invariant travel times derived from speed limits 15 (8.2%)

 Limited street coverage: partial street data for major roads only without minor or secondary roads; time‑invariant travel 
times derived from speed limits

73 (39.9%)

 Minimal street coverage: partial street data for some major roads only; no ground verification of network; no speed limit 
data

24 (13.1%)

Google travel times—traffic

 Traffic layer—available with good data quality and availability 91 (49.7%)

 Traffic layer—available with approximate data quality or availability 1 (0.5%)

 Traffic layer not available 91 (49.7%)

Google travel times—speed limits

 Speed limits—available with good data quality and availability 11 (6.0%)

 Speed limits—available with approximate data quality or availability 166 (90.7%)

 Speed limits not available 6 (3.3%)
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Sub‑national case studies
Figure  3 shows the relationship between geocoding 
success rate and deprivation, in Lagos State and East-
ern Region, with no clear relationship emerging overall. 
Geocoding success rates were low for health facilities in 
Eastern Region, but much higher for schools in Lagos 
State. In Eastern Region, districts such as East Akim 
and Birim Central had high success rates although their 
deprivation score was close to the average. Further 
exploration revealed these two districts had the high-
est number of hospitals (4 each) in the region and hos-
pitals had the highest geocoding success rate (70.6%) 
compared with other health facility types. Likewise, the 
regional capital of New Juaben with 3 hospitals, was 
least deprived and had a high geocoding success rate. 
In Nigeria, two LGAs containing a small number of 
schools, Badagry and Ibeju-Lekki, were more deprived 
and had lower geocoding success rates, particularly 
influencing the observed relationship between depriva-
tion and geocoding success.

Table  5 shows inequality metrics for geocoding suc-
cess rates versus area deprivation at the LGA or district 
level in Lagos State, Nigeria, and Eastern Region, Ghana. 
There was no evidence of inequality in geocoding success 
relative to area deprivation in Lagos State, as indicated 
by the concentration index of zero. In Ghana, evidence 
for lower geocoding success in more deprived areas was 
mixed. When the DLT was used to measure area depriva-
tion, confidence intervals for the slope index of inequality 
straddled zero, indicating no significant inequality. When 
the bespoke area deprivation index was used, the slope 
index of inequality was significantly different from zero.

Discussion
To our knowledge, our analysis is the first to examine 
global patterns of commercial geospatial data avail-
ability in relation to health outcomes. As observed with 
healthcare services, both internationally and for two 
sub-national case studies, these data are inversely cor-
related with health need, as measured by mortality and 

Table 2 (continued)

Availability and precision of geospatial data resources No of countries (%)

Google travel times—cycling

 Cycling directions available 21 (11.5%)

 Cycling directions unavailable 162 (88.5%)

iGeolise TravelTime Platform

 Travel times for public transport and driving 23 (12.6%)

 Travel times for driving only 3 (1.6%)

 Travel times unavailable 157 (85.8%)

TomTom

 Online routing with traffic incidents and traffic flows 42 (23.0%)

 Online routing with traffic flows only 15 (8.2%)

 Online routing without traffic 57 (31.1%)

 No online routing 69 (37.7%)

MapBox

 Traffic layer available 33 (18.0%)

 Traffic layer unavailable 150 (82.0%)

Neighbourhood characterisation

Michael Bauer neighbourhood statistics

 Number of areal attribute groups per country—global mean (5th centile; 95th centile) 4 (0; 9)

 Mean population per areal unit by country—global median (5th centile; 95th centile) 130,000 (411; 23,801,400)

Mosaic Global

Geodemographic classification available 24 (13.1%)

Geodemographic classification unavailable 159 (86.9%)

Cameo worldwide

Geodemographic classification available 39 (21.3%)

Geodemographic classification unavailable 144 (78.7%)

Maptitude

Demographic data (beyond population headcounts) available 13 (7.1%)

Demographic data (beyond population headcounts) unavailable 170 (92.9%)



www.manaraa.com

Page 8 of 15Dotse‑Gborgbortsi et al. Int J Health Geogr  (2018) 17:14 

deprivation respectively. This disparity in geospatial data 
availability is more pronounced for mortality due to com-
municable diseases. Such data are thus frequently una-
vailable for planning healthcare provision or geocoding 

cases for widespread communicable diseases such as 
malaria. The availability of commercial geospatial data 
resources broadly follows the same pattern as that iden-
tified in analyses of the global digital divide, with for 

Table 3 Metrics of  inequality in  international availability of  commercial geospatial data resources, relative to  age-
standardised all-cause mortality for  2015 in  183 countries (portions of this table are modifications based on work 
created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License. 
Used with permission. Copyright © 2017 Esri, ArcGIS Online, HERE, Increment P, GlobeTech and the GIS User Community. 
All rights reserved. © 2017 Michael Bauer Research GmbH, © TomTom 2018)

Index domain Commercial geospatial resource availability/quality measure Relative 
concentration index

Slope index of inequality 
(95% confidence intervals)

Geocoding ESRI − 0.14 7.54 (6.47–8.61)

Pitney Bowes − 0.04 2.18 (0.66–3.69)

TomTom − 0.02 0.9 (− 0.70 to 2.49)

MapBox − 0.07 4.24 (2.77–5.71)

Loqate − 0.01 0.45 (− 1.12 to 2.03)

Geocoding domain − 0.07 3.21 (1.81–4.62)

Patient travel ESRI / HERE − 0.03 1.55 (0.05–3.06)

Google Maps − 0.06 3.24 (1.75–4.72)

MapBox − 0.07 7.79 (5.88–9.70)

iGeolise TravelTime − 0.05 7.25 (4.89–9.61)

TomTom − 0.01 0.32 (− 1.27 to 1.90)

Patient travel domain − 0.04 1.93 (0.47–3.39)

Neighbourhood 
characterisation

Michael Bauer—average population per areal unit − 0.12 6.08 (4.89–7.27)

Michael Bauer—no. of areal attribute groups − 0.07 3.54 (2.14–4.94)

Geodemographic classification/demographic data availability (Experian 
Global & Cameo Worldwide; Maptitude)

− 0.10 5.91 (4.56–7.25)

Neighbourhood characterisation domain − 0.13 6.39 (5.24–7.54)

Overall index Overall commercial geospatial resource quality/availability index − 0.08 4.01 (2.64–5.37)

Table 4 Metrics of  inequality in  international availability of  commercial geospatial data resources, relative to  age-
standardised cause-specific mortality for 2015 in 183 countries

Commercial geospatial resource availability/quality measure Relative concentration index Slope index of inequality 
(95% confidence intervals)

Relative to mortality from communicable, maternal, perinatal and nutritional conditions

Geocoding domain − 0.121 3.05 (0.82–5.27)

Patient travel domain − 0.020 0.52 (− 1.77 to 2.80)

Neighbourhood characterisation domain − 0.335 8.44 (6.53–10.35)

Overall geospatial resource index − 0.159 4.01 (1.81–6.20)

Relative to mortality from non‑communicable diseases

Geocoding domain − 0.040 1.38 (0.84–1.91)

Patient travel domain − 0.034 1.18 (0.63–1.73)

Neighbourhood characterisation domain − 0.056 1.91 (1.41–2.41)

Overall geospatial index − 0.045 1.54 (1.01–2.06)

Relative to mortality from injuries

Geocoding domain − 0.092 0.39 (0.22–0.56)

Patient travel domain − 0.034 0.14 (− 0.03 to 0.32)

Neighbourhood characterisation domain − 0.170 0.72 (0.58–0.87)

Overall geospatial index − 0.103 0.44 (0.27–0.60)
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example sub-Saharan Africa being the world region lag-
ging furthest behind North America in internet users 
[33] and Africa having the lowest Information and Com-
munication Technology Development Index [34]. The 
pattern of outliers is somewhat different to these more 
general analyses of the global digital divide, however. For 
example, an assessment of digitalisation relative to GDP 
per capita [35] indicated lower than anticipated digitali-
sation in Oman and Kuwait but higher digitalisation in 
South Korea. We observed the same relationship for the 
Gulf States in relation to our commercial geospatial index 
but low international availability of commercial geospa-
tial data in South Korea. However, because of restrictions 
on the export of mappable data out of the country, South 
Korea has previously been reported as lacking data from 
major providers such as Google [36].

In the absence of such commercial tools, and where 
sufficient capacity exists, researchers in LMICs have 
resorted to alternative strategies for geocoding data, 
computing drive-times, and characterising patients’ 

places of residence. Where the human resources, infra-
structure, and tools exist, one geocoding strategy is 
to rely on open data, particularly  OSM, as has been 
attempted in Thailand and Mozambique for healthcare 
management [37, 38]. Elsewhere, a study in Yemen, relied 
on direct measurement of drive-times taken on specific 
routes [39]. A Kenyan study explored participatory map-
ping and use of local landmarks as strategies for geoco-
ding patient addresses [40], whilst in a Mexican study, a 
software application was developed that allowed patients 
to identify their place of residence through interpretation 
of Google Earth and StreetView imagery [41]. In Cote 
d’Ivoire, aggregated call record data from mobile phones 
have been used to develop a proxy for regional socio-eco-
nomic indicators [42], whilst in Accra, vegetation metrics 
derived from QuickBird satellite imagery were correlated 
with a slum index [43]. Without such innovative geoco-
ding or neighbourhood characterisation strategies, there 
is potential for misclassification of neighbourhood char-
acteristics [44] and environmental exposures [45] when 

Fig. 1 An index of commercial geospatial resource quality/availability for healthcare planning by country (based on a Winkel‑Tripel projection. 
Portions of this graphic are modifications based on work created and shared by Google and thematicmapping.org and used according to terms 
described in the Creative Commons 3.0 Attribution License. Used with permission. Copyright © 2017 Esri, ArcGIS Online, HERE, Increment P, 
GlobeTech and the GIS User Community. All rights reserved. © 2017 Michael Bauer Research GmbH, © TomTom 2018)
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analysing LMIC patient data using inexact geocodes or 
areal statistics relating to large populations.

International organisations have invested heavily in 
geospatial infra-structure, capacity-building, and tech-
nology to address this paucity of commercial data and 
its affordability in low-resource settings. The WHO for 
example has developed AccessMod to estimate patient 
travel times to health facilities via a cost surface approach 

[46]. Because of limited access to software and technical 
GIS skills, WHO also developed the HealthMapper soft-
ware, which packages public domain spatial databases 
with a user-friendly interface to broaden uptake of GIS 
for healthcare planning. HealthMapper has been used 
in schistosomiasis control [47] and prioritising areas for 
filariasis elimination [48]. More recently, Measure Evalu-
ation have supported health management information 

Fig. 3 Deprivation score and geocoding success rates for a health facilities in 25 districts of Eastern Region, Ghana and b schools in 20 local 
government areas in Lagos State, Nigeria
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systems by developing the Place Mapping plug-in for 
QGIS to ease handling and display of point data sets [49] 
and provided guidance on diagnosing positional errors 
[50].

We found less conclusive evidence that geocoding suc-
cess rates were lower in deprived areas when consider-
ing the two sub-national case studies of Lagos State, 
Nigeria and Eastern Region, Ghana. There was no evi-
dence of inequality in geocoding success in Lagos State, 
but mixed evidence of such inequality in Eastern Region. 
However, elsewhere an apparent inverse relationship 
between geocoding outcomes and area deprivation has 
been observed at local level in other LMICs. A study in 
the Brazilian city of Belo Horizonte, for example, found 
that geocoding precision via the Google geocoding API 
was lower in slum areas than in formal urban neighbour-
hoods [51]. In response to this issue, the What3Words 
georeferencing system, which uses an algorithm to assign 
three words as a unique, human-friendly georeference to 
each of 57 trillion grid squares globally, has been used to 
locate addresses in Brazilian favelas lacking conventional 
addressing systems [52].

Our findings are subject to several limitations. Our 
study assumes that the data provider’s published country 
coverage information is an accurate reflection of geospa-
tial data availability and precision across all countries. 
In reality, export of geospatial data from one country to 
another may be restricted by trade embargos, as has pre-
viously happened with satellite imagery exports to India 
for example [53], and where commercial geospatial data 
are available internationally, they may be unaffordable 
within the national health sector. In assessing the inter-
national availability of geodemographic classifications, 
we focussed on two major international data providers 
only, potentially omitting smaller data providers operat-
ing in individual countries. However, a recent study of 
the international availability of geodemographic classifi-
cations [54] showed very similar patterns to that found 

here. Computed inequality indices are also likely to be 
lower for metrics of geospatial data availability and pre-
cision based on a small number of ordinal classes (e.g. 
for geodemographic data availability), than metrics on a 
ratio scale (e.g. mean population per areal unit). In our 
sub-national case studies, geocoding success rates for 
higher tier facilities (e.g. hospitals or large secondary 
schools) may be higher than for lower tier facilities (e.g. 
primary care facilities such as Community-Based Health 
Planning and Services compounds). Since such facilities 
are more often found in urban areas, such heterogeneity 
in facility type may lead to an over-estimate of inequality 
in geocoding resource access.

Given the rapid pace of change in the geospatial data 
sector, this analysis could be repeated in the future to 
monitor rapidly changing data availability in relation to 
health outcomes. We have only considered the relation-
ship between commercial geospatial resources and mor-
tality, but geospatial resource availability could also be 
examined in relation to underlying drivers of health out-
comes, such as country income levels, internet access, 
and relevant government policies, or in relation to meas-
ures relevant for other sectors (such as infrastructure). 
There would also be scope to combine the country-level 
results presented here on commercial geospatial data 
with recent assessments of OSM completeness by coun-
try [15, 16]. These studies, based on stratified assessment 
of OSM road completeness [16] or saturation of user con-
tributions [15], suggest that global commercial geospatial 
resources and OSM completeness patterns are somewhat 
different, with for example, China and Egypt having low 
OSM completeness [16]. The potential utility of com-
mercial geospatial data resources for healthcare planning 
could also be explored through a case study country (e.g. 
South Africa), deliberately selected because of its high 
mortality and high geospatial data availability.

The comparatively richer commercial resources in 
west and southern African countries such as Nigeria and 

Table 5 Inequalities in  geocoding success rates, relative to  area deprivation (for 984 health facilities in  25 districts 
in Eastern Region, Ghana and 298 schools in 20 LGAs in Lagos State, Nigeria)

Case study details Relative concentration index Slope index of inequality 
(95% confidence 
intervals)

Eastern Region, Ghana

Geocoding success rate for health facilities

 Relative to UNICEF District League Table 0.14 6.87 (− 2.24 to 15.97)

 Relative to bespoke district deprivation index 0.20 9.57 (0.93–18.21)

Lagos State, Nigeria

Geocoding success rate for schools

 Relative to LGA deprivation index 0.00 − 1.99 (− 24.41 to 20.43)
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South Africa merit further investigation for healthcare 
planning in these countries, subject to sufficient funds 
being available to support their use in a given project.

In contrast to analyses from elsewhere [51], our sub-
national analyses in Lagos State suggested only limited 
evidence that geocoding success was lower in deprived 
areas. Our inconclusive results may be because the large 
areal units we used to assess deprivation may mask local-
ised pockets of deprivation, which have been identi-
fied via previous work in Accra [55]. In our analysis, we 
implicitly use geocoding success rates to assess spatial 
variation in the Google Maps API reference data set and 
geocoding algorithm performance. However, geocoding 
success also depends on the quality of the input address 
data [56] and this will have been affected by local varia-
tions in service provision tiers, language of place-names 
and place-name aliases in our Nigerian and Ghana-
ian case studies. Furthermore, in our two case studies, 
success rates in geocoding service locations in Eastern 
Region, Ghana, and Lagos State, Nigeria were very dif-
ferent, despite identical documented levels of geocoding 
service precision. Despite their growing potential, this 
suggests careful evaluation of such resources is needed 
prior to their application to healthcare management.

In many other countries with high mortality, com-
mercial geospatial data availability was very low. By 
examining commercial geospatial resource availabil-
ity alongside OSM completeness [16], such countries 
could be targeted via non-profit initiatives to increase 
the availability of open geospatial data availability, such 
as those undertaken through OSM-based volunteer 
mapping initiatives by humanitarian organisations [57, 
58]. Whilst commercial geospatial resource availabil-
ity may improve in these countries in the future, in the 
interim, there remains a need for innovative solutions 
to geocoding outpatient data, estimating patient travel 
times and characterising neighbourhoods in such coun-
tries as described above.

Conclusions
To our knowledge, our analysis is the first to examine 
global patterns of commercial geospatial data avail-
ability in relation to health outcomes. The relation-
ship observed between commercial geospatial resource 
availability and health needs suggests LMICs still have 
inadequate geospatial resources for the type of granular 
analysis needed to drive the SDG agenda surrounding 
UHC. This inequality in data availability is more pro-
nounced for mortality due to communicable diseases 
than for all-cause mortality. There were some outliers, 
however: several west and southern African countries 
such as Nigeria and South Africa had comparatively 

high geospatial data availability and high mortality. In 
contrast, there were several countries with low mortal-
ity and comparatively geospatial data availability, often 
island states (e.g. the Maldives) or those with policy 
restrictions on geospatial data (e.g. South Korea). This 
analysis thus suggests some resources, particularly 
those for quantifying patient travel times, are penetrat-
ing countries with high all-cause mortality. In coun-
tries such as South Africa and Nigeria where there is 
high mortality but also comparatively rich commercial 
geospatial data, these data are a potential resource for 
examining healthcare utilisation that requires further 
evaluation. In countries such as Sierra Leone where 
there is high mortality but minimal commercial geo-
spatial data, alternative approaches, for example based 
on open data such as OSM, are needed in quantifying 
patient travel times, geocoding patient addresses, and 
characterising patients’ neighbourhoods.

In many instances, our examination of patterns of 
commercial geospatial availability confirms other stud-
ies of global digitalisation, with for example lower lev-
els of digitalisation in the Gulf States for a given level 
of GDP per capita. However, even where this is com-
paratively high availability of relevant commercial 
geospatial data availability, this alleviates just one bar-
rier among many that inhibit uptake of GIS in health-
care planning. Beyond increasing the availability of 
core data, further investments are needed in technical 
capacity-building, awareness-raising, guidelines, stand-
ards and protocols if the potential of such data is to be 
realised within the health sector.
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